If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+8u-4=0
a = 3; b = 8; c = -4;
Δ = b2-4ac
Δ = 82-4·3·(-4)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*3}=\frac{-8-4\sqrt{7}}{6} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*3}=\frac{-8+4\sqrt{7}}{6} $
| -6x7=-2(3x+5) | | 17w-8=9 | | 1/4(2x+16/3)+2/3(3/4x−2/4)=−5 | | 13x–55=8x+25 | | 1/4(2x+163)+2/3(3/4x−2/4)=−5 | | 3x+1=45+19 | | 5(n+4)=-(n+7)=-11 | | 7x-14x=4 | | 3(2x+4)+13(2x+2)=39(x-8) | | 13-k=-8-(3k-7) | | (6.1+b)+8.4=b+ | | 8x+12+12x-18+x=180 | | -2p-8(-8p+1)= | | 3x-7=x²-10 | | 8x+20=5x-10 | | A=1/24h | | 28=6+2/3x | | -8(7p+5)=-488 | | 5x-25°=4x-20° | | 7(x+2)=78-x | | s/2=36 | | 4n−12=2n | | x3−5x2+6x=0 | | 12=8-p/2 | | -13f=-52 | | 56=4x^2 | | 2Y+0.5y=2.3 | | 8–3x=x–4(-2+x) | | -8x+4=≤36 | | x1=-5 | | 8-2x=x-4-3x | | p-121=14 |